CCD影像儀的重要組成部分
CCD是于1969年由美國貝爾實驗室(Bell Labs)的維拉·波義耳)和喬治·史密斯(George(Willard S. Boyle
E. Smith)所發明的。當時貝爾實驗室正在發展影像和半導體氣泡式內存。將這兩種新技術結合起來后,波義耳和史密斯得出一種裝置,他們命名為“電荷‘氣泡’元件”(Charge "Bubble" Devices)。這種裝置的特性就是它能沿著一片半導體的表面傳遞電荷,便嘗試用來做為記憶裝置,當時只能從暫存器用“注入”電荷的方式輸入記憶。但隨即發現光電效應能使此種元件表面產生電荷,而組成數位影像?!〉搅?0年代,貝爾實驗室的研究員已經能用簡單的線性裝置捕捉影像,CCD就此誕生。有幾家公司接續此一發明,著手進行進一步的研究,包括快捷半導體(Fairchild Semiconductor)、美國無線電公司(RCA)和德州儀器(Texas Instruments)。其中快捷半導體的產品上市,于1974年發表500單元的線性裝置和100x100像素的平面裝置。
以上為CCD發展歷程
1、HAD感測器
HAD(HOLE-ACCUMULATION DIODE)傳感器是在N型基板,P型,N+2極體的表面上,加上正孔蓄積層,這是SONY*的構造。由于設計了這層正孔蓄積層,可以使感測器表面常有的暗電流問題獲得解決。另外,在N型基板上設計電子可通過的垂直型隧道,使得開口率提高,換句換說,也提高了感度。在80年代初期,索尼將其使用在可變速電子快門產品中,在拍攝移動快速的物體也可獲得清晰的圖象。[2]
2、ON-CHIP MICRO LENS
80年代后期,因為CCD中每一像素的縮小,將使得受光面積減少,感度也將變低。為改善這個問題,索尼在每一感光二極管前裝上微小鏡片,使用微小鏡片后,感光面積不再因為感測器的開口面積而決定,而是以微小鏡片的表面積來決定。所以在規格上提高了開口率,也使感亮度因此大幅提升。
3、SUPER HAD CCD
進入90年代后期以來,CCD的單位面積也越來越小,1989年開發的微小鏡片技術,已經無法再提升感亮度,如果將CCD組件內部放大器的放大倍率提升,將會使雜訊也被提高,畫質會受到明顯的影響。索尼在CCD技術的研發上又更進一步,將以前使用微小鏡片的技術改良,提升光利用率,開發將鏡片的形狀*化技術,即索尼 SUPER技術。基本上是以提升光利用效率來提升感亮度的設計,這也為日前的CCD基本技術奠定了基礎。 HAD CCD
4、NEW STRUCTURE CCD
在攝影機的光學鏡頭的光圈F值不斷的提升下,進入到攝影機內的斜光就越來越多,使得入射到CCD組件的光無法的被聚焦到感測器上,而CCD感測器的感度將會降低。1998年索尼公司為改善這個問題,將彩色濾光片和遮光膜之間再加上一層內部的鏡片。加上這層鏡片后可以改善內部的光路,使斜光也可以被聚焦到感光器。而且同時將硅基板和電極間的絕緣層薄膜化,讓會造成垂直CCD畫面雜訊的訊號不會進入,使SMEAR特性改善。
5、EXVIEW HAD CCD
比可視光波長更長的紅外線光,也可以在半導體硅芯片內做光電變換??墒侵廉斍盀橹梗珻CD無法將這些光電變換后的電荷,以有效的方法收集到感測器內。為此,索尼在1998年新開發的“EXVIEW HAD CCD”技術就可以將以前未能有效利用的近紅外線光,有效轉換成為映像資料而用。使得可視光范圍擴充到紅外線,讓感亮度能大幅提高。利用“EXVIEW HAD CCD”組件時,在黑暗的環境下也可得到高亮度的照片。而且之前在硅晶板深層中做的光電變換時,會漏出到垂直CCD部分的SMEAR成分,也可被收集到傳感器內,所以影響畫質的雜訊也會大幅降低[3]。
榮譽
2006年元月,波義耳和史密斯獲頒電機電子工程師學會(IEEE)頒發的Charles Stark Draper獎章,以表彰他們對CCD發展的貢獻。
北京時間2009年10月6日,2009年諾貝爾物理學獎揭曉,瑞典*科學院委員會宣布將該獎項授予一名中國科學家高錕)和兩名科學家維拉·博伊爾(Willard S. Boyle)和喬治·史密斯(George E. Smith)??茖W家Charles K. Kao 因為“在光學通信領域中光的傳輸的開創性成就” 而獲獎,科學家因博伊爾和喬治-E-史密斯因“發明了成像半導體電路——電荷藕合器件圖像傳感器獲此殊榮。CCD” (Charles K. Kao香港諾貝爾獎
編輯本段功能特性
CCD圖像傳感器可直接將光學信號轉換為模擬電流信號,電流信號經過放大和模數轉換,實現圖像的獲取、存儲、傳輸、處理和復現。其顯著特點是:1.體積小重量輕;2.功耗小,工作電壓低,抗沖擊與震動,性能穩定,壽命長;3.靈敏度高,噪聲低,動態范圍大;4.響應速度快,有自掃描功能,圖像畸變小,無殘像;5.應用超大規模集成電路工藝技術生產,像素集成度高,尺寸,商品化生產成本低。因此,許多采用光學方法測量外徑的儀器,把CCD器件作為光電接收器。
工作原理CCD
CCD從功能上可分為線陣CCD和面陣CCD兩大類。線陣CCD通常將CCD內部電極分成數組,每組稱為一相,并施加同樣的時鐘脈沖。所需相數由CCD芯片內部結構決定,結構相異的CCD可滿足不同場合的使用要求。線陣CCD有單溝道和雙溝道之分,其光敏區是MOS電容或光敏二極管結構,生產工藝相對較簡單。它由光敏區陣列與移位寄存器掃描電路組成,特點是處理信息速度快,外圍電路簡單,易實現實時控制,但獲取信息量小,不能處理復雜的圖像(線陣CCD如右圖所示)。面陣CCD的結構要復雜得多,它由很多光敏區排列成一個方陣,并以一定的形式連接成一個器件,獲取信息量大,能處理復雜的圖像。
CCD的內部結構
*層“微型鏡頭”
我們知道,數碼相機成像的關鍵是在于其感光層,為了擴展CCD的采光率,必須擴展單一像素的受光面積。但是提高采光率的辦法也容易使畫質下降。這一層“微型鏡頭”就等于在感光層前面加上一副眼鏡。因此感光面積不再因為傳感器的開口面積而決 定,而改由微型鏡片的表面積來決定。
第二層是“分色濾色片”
CCD的第二層是“分色濾色片”,目前有兩種分色方式,一是RGB原色分色法,另一個則是CMYK補色分色法這兩種方法各有優缺點。首先,我們先了解一下兩種分色法的概念,RGB即三原色分色法,幾乎所有人類眼鏡可以識別的顏色,都可以通過紅、綠和藍來組成,而RGB三個字母分別就是Red, Green和Blue,這說明RGB分色法是通過這三個通道的顏色調節而成。再說CMYK,這是由四個通道的顏色配合而成,他們分別是青(C)、洋紅(M)、黃(Y)、黑(K)。在印刷業中,CMYK更為適用,但其調節出來的顏色不及RGB的多。
原色CCD的優勢在于畫質銳利,色彩真實,但缺點則是噪聲問題。因此,大家可以注意,一般采用原色CCD的數碼相機,在ISO感光度上多半不會超過400。相對的,補色CCD多了一個Y黃色濾色器,在色彩的分辨上比較仔細,但卻犧牲了部分影像的分辨率,而在ISO值上,補色CCD可以容忍較高的感光度,一般都可設定在800以上
第三層:感光層
CCD的第三層是“感光片”,這層主要是負責將穿過濾色層的光源轉換成電子信號,并將信號傳送到影像處理芯片,將影像還原。